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Abstract
We study the problem of particles undergoing Brownian motion in an expanding
sphere whose surface is an absorbing boundary for the particles. The problem
is akin to that of the diffusion of impurities in a grain of polycrystalline material
undergoing grain growth. We solve the time dependent diffusion equation for
particles in a d-dimensional expanding sphere to obtain the particle density
function (function of space and time). The radius of the sphere expands as
R = (Kt)α , where α is the growth exponent, K a constant and t the time.
This allows the calculation of the survival rate or the total number of particles
per unit volume as a function of time. We have obtained particular solutions
exactly for the case where d = 3 and a parabolic expansion of the sphere.
Asymptotic solutions for the particle density when the sphere expansion rate is
small relative to particle diffusivity and vice versa are derived.

PACS number: 05.40−a

1. Introduction

The kinetics of many physical systems can be described by first-passage properties of stochastic
systems (Redner 2001). In particular, the problem of the survivability of a diffusing particle,
or Brownian walker, in a confined domain (‘cage’) with a moving and absorbing boundary
(‘fence’) has been a subject of several recent studies (Krapivsky and Redner 1996, Redner
2001, Bray and Smith 2007b, 2007a).

Krapivsky and Redner (1996) evaluated the survival probability of a diffusing particle S(t)

as a function of time t within a one-dimensional expanding cage of length L(t) with absorbing
boundaries by solving the standard diffusion equation (heat equation) in one dimension.
Approximate methods were devised in the limit of slow (adiabatic approximation) and fast
(free approximation) motion of the absorbing boundary. More specifically, Krapivsky and
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Redner (1996) considered L(t) ∼ tα with α < 1/2 for an adiabatic approximation and
α > 1/2 for a free approximation. Moreover, the case of α = 1/2, corresponding to a
marginally expanding cage, was theoretically assessed; see also Redner (2001).

Bray and Smith (2007b) calculated the exact asymptotic survival probability of a one-
dimensional Brownian particle, initially confined at a position x ∈ (−L(t), L(t)) in the
presence of two moving and absorbing boundaries by solving a Fokker–Planck equation for
the system in the limit t → ∞. Subsequently, they (Bray and Smith 2007a) extended their
method to treat the case of the d-dimensional system and in particular d = 3. Similarly, in
the latter work, they considered the steady-state case (t → ∞) and assumed the absorbing
sphere’s size evolves as L(t) = L0 + vt , where L0 is the initial size and v is the constant
velocity of the boundary.

The aforementioned deliberations have relevance to the problem of diffusing particles
(impurities) in a grain of polycrystalline material under grain growth (Forsberg and Massih
2007). Grain growth is a kinetic process at which the mean grain size of an aggregate of
crystals increases during annealing at an elevated high temperature (Atkinson 1988). In this
course, the larger grains are apt to increase in size at the expense of smaller grains which
collapse, causing the total number of grains to decrease. Impurities in solid solution, prevalent
in polycrystalline materials, which usually undergo diffusive motion at elevated temperatures,
are in addition subjected to a moving or stretching medium due to grain growth. In particular,
the process occurs in nuclear fuel (e.g., UO2), whereupon the fission product gases (e.g., Xe
and Kr) diffusing in the grain can be subjected to a moving grain boundary. Grain boundary
movement can sweep up fission gas atoms more rapidly than they could have arrived at
the boundary by diffusion (Hargreaves and Collins 1976). This problem has been treated
in Forsberg and Massih (2007). Modeling the grain growth phenomenon or evolution of a
cellular structure in general has been a subject of many recent investigations using various
theoretical and numerical approaches; see the review by Thompson (2001). For example, in
Niemiec et al (1998) and Gadomski et al (2003) a different approach is used to describe the
grain growth process and for which the exponents of the growth asymptotes are presented.

In this paper, we solve the time-dependent diffusion equation for particles in a d-
dimensional expanding spherical grain to obtain the particle density as a function of space and
time. Equations of motion are treated in section 2. General solutions for particle density are
provided in section 3. Special solutions are derived in section 4 for the case of d = 3 and
a parabolic grain growth. An evaluation of particle survival is presented in section 5; here
we also include asymptotic solutions for particle density when the grain growth rate is small
relative to particle diffusivity and vice versa. We conclude the paper in section 6 with a brief
summary of the results.

2. Equations of motion

We consider the equivalent sphere model for material, meaning that the grains of the material
are treated as a collection of spheres of uniform size characterized by a single equivalent
radius, R ≡ R(t), which is a function of time t. The particles (e.g. interstitials, impurities etc)
migrate to grain boundaries by diffusion upon which are released from the system. The grain
can contain traps (vacancies, pores, etc), which may capture the diffusing particle during its
flight. The differential equation for the density of particles at position r in a d-dimensional
spherical grain at time t, C(r, t), is given by the law of isotropic diffusion, namely

∂C(r, t)

∂t
= D∇2

r C(r, t), (1)

2
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subject to the conditions,

∂C(0, t)

∂r
= 0, (2)

C(R(t), t) = 0, (3)

C(r, 0) = C0, (4)

where D is the effective diffusivity of particles in the grain, accounting for the presence of
traps, ∇2

r = ∂2/∂r2 + ((d − 1)/r)∂/∂r, C0 is the initial density of particles in the grain, and
equation (3) defines the absorbing boundary (Dirichlet boundary condition). We should note
that D, the effective diffusion coefficient of the particles in the grain, accounts for the effect
of intragranular traps. As has been shown by Speight (1969), for stationary traps, it is related
to the intrinsic diffusivity Dint of particle in the solid through D = pDint/(p + g), where p is
the escape probability of the trapped particle and g is the corresponding capture probability,
related to trap size, the number of traps n and the intrinsic diffusivity, e.g. for spherical traps,
g = 4πDint�n, where � is the trap mean radius (Ham 1958). Thus, at any time, only a fraction
of the particles is trapped, while the rest are able to diffuse out of the grain.

The total number of particles per unit volume of a d-dimensional spherical grain (Vd) at
time t,G(t), is given by

G(t) = d

Rd(t)

∫ R

0
rd−1C(r, t)dr. (5)

The total number of particles contained in the grain at time t is simply S(t) ≡ Vd(t)G(t)

with Vd(t) = πd/2Rd(t)/�(d/2 + 1) being the volume of the sphere at time t, while the total
number of particles released from the grain is

F(t) = Vd(0)C0 − S(t). (6)

In general, we allow the particle diffusion and grain growth to occur simultaneously; hence we
scale equation (1) to embed the time-dependent variable R(t) in the coordinate of the partial
differential equation (space-time), namely

∂C(ρ, τ )

∂τ
= ∂2C(ρ, τ )

∂ρ2
+

[
d − 1

ρ
+

Rτ

R
ρ

]
∂C(ρ, τ )

∂ρ
, (7)

where we put

ρ = r

R
, (8)

τ = D

∫ t

0

ds

R2(s)
, (9)

with Rτ = ∂R/∂τ and the conditions ∂C(0, τ )/∂ρ = 0, C(1, τ ) = 0 and C(ρ, 0) = C0. The
total number of particles contained in the grain as a function of τ is obtained by transforming
equation (5) to

G(τ ) = d

∫ 1

0
xd−1C(x, τ ) dx. (10)

Note that in our convention the variables are transformed to C(r, t) ⇒ C(ρ, τ ),G(t) ⇒ G(τ )

and R(t (τ )) = R(τ ). Solving equation (7) for C(ρ, τ ),G(τ ) can be determined through the
evaluation of the integral in (10).

3
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Before discussing the solution of equation (7), we should note that grain growth is assumed
to obey a power law (Atkinson 1988, Martin et al 1997) according to

R̄(t)m − R̄m
0 = Kt, (11)

where R̄ is the mean grain radius and K is a constant with Arrhenius temperature dependence.
In the limit where R̄(t) � R̄0, we write R̄(t) = (Kt)α , with α ≡ 1/m being the grain growth
exponent. In mean field (non-topological) theories α = 1/2 for both d = 2 and d = 3, i.e.,
a parabolic growth law. Grain growth experiments usually exhibit α � 1/2, the difference
could be a result of neglecting the topological constraints and the detailed microstructure.

3. General solution

Following the method outlined in Forsberg and Massih (2007), we write the general solution
of equation (7) in terms of the basis components

C(ρ, τ ) =
∞∑
i=0

aiei(ρ, τ ), (12)

where ai are real numbers (constants). Next, we separate the principal time-dependence of
ei(ρ, τ ) by making an ansatz

ei(ρ, τ ) = exp(−ωiτ )̃ei(ρ, τ ), (13)

where ωi is a constant and ẽi is weakly time dependent obeying

∂ẽi

∂τ
= 	′

ρ ẽi + ωĩei (14)

with 	′
ρ ≡ ∂2

∂ρ2
+

[
d − 1

ρ
+

Rτ

R
ρ

]
∂

∂ρ
, (15)

which is subjected to the boundary conditions ∂ẽi(0, τ )/∂ρ = 0 and ẽi (1, τ ) = 0.
We now express the function ẽi in terms of an infinite series

ẽi =
∞∑

k=0

iλkk̂ei , (16)

where iλk; i � 1, with iλ0 = 1, and ωi are selected such that the imposed boundary conditions
are satisfied for all τ and k̂ei satisfy equation (14) with solutions expressed in binomial series
in the form

k̂ei(ρ, τ ) =
k∑

m=0

(
k

m

)
(2τ)k−m m

i f (ρ), (17)

where m
i f satisfy the following differential equations,

	′
ρ

0
i f + ωi

0
i f = 0, (18)

	′
ρ

m
i f + ωi

m
i f = 2mm−1

i f , for m � 1, (19)

with m
i f (1) = 0, m

i f (0) = δm0 and m
i f

ρ
(0) = 0, δm0 the Kronecker delta and fρ = df/dρ. As

will be shown below, 0
i f are expressible in terms of the confluent hypergeometric functions,

whereas m
i f with m � 1 are related to such functions.

4
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Writing equation (18) in a spherical grain, we obtain

d2f
d2ρ

+

(
d − 1

ρ
+ cρ

)
df
dρ

+ wf = 0, (20)

subject to f(1) = 0, f(0) = 1 and fρ(0) = 0, where f = m
i f , c = ∂ lnR/∂τ ≡ Rτ /R and

w = ωi . Equation (20) can be transformed to the more familiar confluent hypergeometric
equation

z
d2u
d2z

+

(
d

2
− z

)
du
dz

− au = 0, (21)

subject to u(−c/2) = 0, u(0) = 1 and that uz(0) exists, where z = −cρ2/2, a = w/2c and
u(z) ≡ f(ρ). We should note that equations (20) and (21) are tacitly time dependent through
c. When Rτ /R = constant, c becomes a time-independent constant and exact solutions can
be derived. The assumption that c= constant is exact for a parabolic growth law, since, by
recalling equation (9), it implies dR2/dt = 2Dc.

A solution of equation (21) is the confluent hypergeometric function (Dennery and
Krzywicki 1995) written in the form

u(z) = �

(
a,

d

2
; z

)
, (22)

where �(a, b; z) is the Kummer function; also with alternative notations M(a, b, z) or
1F1(a, b, z); see, e.g., Abramowitz and Stegun (1964). This function is regular at z = 0
and can be expressed as a power series:

�(a, b; z) =
∞∑

s=0

�(a + s)�(b)zs

�(a)�(b + s)�(1 + s)
. (23)

4. Special solutions

A point worth noting is that equation (21) can be expressed as an eigenvalue problem
of the form Lu(z) = anu(z), where an is the energy eigenvalue of the operator L =
z d2/dz2 + (d/2− z) d/dz. We ‘quantize’ the eigenvalues, an = n+ 1/2, where n = 0, 1, 2, . . .

(n ∈ N), and thus write

nu(z) = �

(
n +

1

2
,

d

2
; z

)
, (24)

or alternatively

0
nf (y) = �

(
n +

1

2
,

d

2
;−y2

)
. (25)

Here the choice of an = n + 1/2 is merely to obtain a series of convenient expressions
(harmonics) for the solutions 0

nf (y) and integrals of 1
nf (y), see below. For the ground state,

n = 0 and d = 3, we have

0
0f (y) =

√
π

2y
erf(y), (26)

where y = (c/2)1/2ρ and erf(y) is the usual error function.
Next, returning to equation (19) and writing it in the spherical system,

m
i f

ρρ
+

(
d − 1

ρ
+ cρ

)
m
i f

ρ
+ ωi

m
i f = 2mm−1

i f , for m � 1. (27)

5
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Again, replacing z = −cρ2/2, equation (27) is transformed to

zm
n u

zz
+

(
m +

1

2
− z

)
m
n u

z
−

(
n +

1

2

)
m
n u = −m

c

m−1
n u, for m � 1, (28)

where the aforementioned quantized energy eigenvalues, ω/2c = n + 1/2, were used, and in
addition, the spatial dimension was quantized, in the manner, d = 2m + 1. Let us write (28)
for m = 1 and n ∈ N with the convention nu ≡ 1

nu, namely

znuzz +

(
3

2
− z

)
nuz −

(
n +

1

2

)
nu = − np(z)

c
ez. (29)

In writing the right-hand side of equation (29), we have utilized Kummer’s relation

�
(
n + 1

2 ,m + 1
2 ; z

) = ez m
n p(z), (30)

m
n p(z) = �

(
m − n,m + 1

2 ;−z
)
, (31)

where m
n p(z) is a polynomial when n � m. In particular, with np = 1

np, we have

1p(z) = 1, (32)

2p(z) = 1 +
2z

3
, (33)

3p(z) = 1 +
4z

3
+

4z2

15
, (34)

4p(z) = 1 + 2z +
4z2

5
+

8z3

105
. (35)

Let us now remove ez from equation (29) by making the substitution nu(z) = ez
nv(z), we

obtain

znvzz +

(
3

2
+ z

)
nvz − (n − 1) nv = − np(z)

c
. (36)

This can be differentiated n − 1 times to give

znv
(n+1) +

(
n +

1

2
+ z

)
nv

(n) = −2n−1(n − 1)!

(2n − 1)!!c
, (37)

where the superscript in the parentheses on nv denotes the number of differentiations with
respect to the argument. We find nv by first integrating (37) once, which yields

nv
(n)(z) = −2n−1(n − 1)!

(2n − 1)!!c
z−(n+1/2) e−z

∫ z

0
ζ n−1/2 eζ dζ ; (38)

then with further integrations, n times, we obtain

nv(z) = − 2n−1

(2n − 1)!!c

∫ z

0
(z − s)n−1

∫ s

0

(
ζ

s

)n−1/2

eζ−s dζ ds. (39)

After some rearrangement, we write

nv(z) = − 2n−1

(2n − 1)!!c

∫ 1

0
(1 − κ)n−1/2 e−κz

∫ z

0
sn−1 eκs ds dκ. (40)

The integral over the variable z can be expressed in terms of gamma functions, namely∫ z

0
sn eκs ds = (−κ)−n−1 [�(n + 1,−κz) − n�(n)] , (41)

6
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where �(a, x) is an incomplete gamma function (Abramowitz and Stegun 1964). Substituting
this result in equation (40) and making use of the properties of gamma functions (Abramowitz
and Stegun 1964), we finally write

nv(z) = −2n−1(n − 1)!

(2n − 1)!!c

∫ 1

0
(1 − κ)n−1/2(−κ)−n−2

∞∑
j=0

(−κz)n+j

�(n + j + 1)
dκ. (42)

Hence the solution to equation (29) is found through nu(z) = ez
nv(z).

Let us evaluate the solution of equation (21), relation (22), when c is small, i.e.,Rτ /R � 1
or a � 1. We first write (22) in a quantized form,

�

(
a,

d

2
; z

)
⇒ �

(
a + m,

d

2
+ m; z

)
, (43)

for m ∈ N. For negative z, we can expand (43) in series (Abramowitz and Stegun 1964)
according to

�

(
a + m,

d

2
+ m; z

)
= �

(
m +

d

2

)
ez/2

(σ

2

)ν
∞∑

n=0

An

( z

σ

)n

Jn−ν(σ ), (44)

where σ = √
(d − 2m)z − 4az, ν = 1 − m − d/2, A0 = 1, A1 = 0, A2 = d/4 + m/2, and

(n + 1)An+1 = (n + d/2 + m − 1)An−1 + (2a + m − d/2)An−2. (45)

In equation (44), Jp(σ ) is the Bessel function of the first kind, related to the spherical Bessel
function via jp(σ ) = √

π/2σJp+1/2(σ ). Specializing to d = 3, equation (44) can be expressed
as

�

(
a + m,

3

2
+ m; z

)
= (2m + 1)!! ez/2

∞∑
n=0

Anz
nσ−(m+n)jm+n(σ ). (46)

Since A1 = 0, the first term in series (46) offers a good approximation for large a. For m = 0,
we find

�

(
a,

3

2
; z

)
≈ ez/2 sin σ

σ
, (47)

with σ = √
(3 − 4a)z. Recalling the substitutions a = ω/2c and z = −cρ2/2, we write

�

(
ω

2c
,

3

2
;−cρ2/2

)
≈ e−cρ2/4 sin[ρ

√
ω − 3c/2]

ρ
√

ω − 3c/2
. (48)

Hence for c = 0, we have � = sin(ρ
√

ω)/(ρ
√

ω); the result which could be obtained directly
from equation (22), namely

lim
c→0

�

(
ω

2c
,
d

2
;−cρ2/2

)
= 0F1

(
; d

2
;−ωρ2/4

)
. (49)

The 0F1 function has the series expansion 0F1(; b; z) = ∑∞
k=0(�(b)/�(b + k))zk/k!, and can

be expressed in terms of the Bessel functions of the first kind, e.g., 0F1(; 3/2;−ωρ2/4) =
j0(ρ

√
ω) = sin(ρ

√
ω)/(ρ

√
ω).

Let us now be more explicit and write the series solution from equations (13) and (16) as
follows,

ei(ρ, τ ) = (0̂ei + iλ11̂ei + iλ22̂ei + · · ·) exp(−ωiτ), (50)

7
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where, according to equation (17), we write

0̂ei = 0
i f (ρ)

1̂ei = 1
i f (ρ) + 2τ 0

i f (ρ)

2̂ei = 2
i f (ρ) + 4τ 1

i f (ρ) + 4τ 2 0
i f (ρ)

etc. (51)

The functions m
i f satisfy the differential equations (18)–(19) or (27). For c = 0, i.e. when

(dR2/dt)/D � 1, we have (d = 3)

0
i f (ρ) = j0(ρµi) (52)

m
i f (ρ) = µ−2m

i (ρµi)
mjm(ρµi), (53)

where µi = √
ωi . Satisfying the boundary condition 0

i f (1) = 0, we obtain

µj = jπ j = 0, 1, 2, . . . . (54)

Next, we calculate the total number of particles per unit volume of the grain at ‘time’ τ ,
i.e. equation (10), expressed as

G(τ ) =
∞∑
i=0

Gi (τ ), (55)

where using equation (12) and in three dimensions, we write

Gi (τ ) = 3
∫ 1

0
x2ei(x, τ ) dx. (56)

Substituting for ei(x, τ ) from equation (50) and employing the relations in (51) gives

Gi (τ ) = 3
∫ 1

0
x2[ 0

i f (x) + iλ1
( 1

i f (x) + 2τ 0
i f (x)

)
+

+ iλ2
( 2

i f (x) + 4τ 1
i f (x) + 4τ 2 0

i f (x)
)

+ · · · ] e−µ2
i τ dx. (57)

The terms in equation (57) can be integrated by using the relation∫ 1

0
x2n

i f (x) dx = µ−1
i jn+1(µi). (58)

In a numerical treatment the parameters iλ1, iλ2 are determined by satisfying the boundary
conditions at the beginning and the end of each discretized time interval. Moreover, the
coefficients ai in equation (12) are determined from the spatial initial condition C(ρ, 0) = C0.
Assuming the orthonormality of the solutions, then in general

ai =
∫ 1

0 C(ρ, 0)ei(ρ, 0)ρd−1dρ∫ 1
0 ei(ρ, 0)2ρd−1dρ

. (59)

5. Evaluation

Let us now evaluate the time variation of the number of particles contained in the grain
(survival rate), namely

dS

dt
= Kd

∂

∂t

∫ R(t)

0
rd−1C(r, t) dr, (60)

8
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where Kd = 2πd/2/�(d/2). Differentiating under the integral and using equations (2) and
(1), we obtain

dS

dt
= KdDR(t)d−1

[
∂C(r, t)

∂r

]
r=R(t)

. (61)

We can also calculate the time derivative of G(t), expressed in the form

Ġ(t) = d

[
Ṡ(t)

KdR(t)d
−

˙R(t)

R(t)
G(t)

]
, (62)

where the over-dot denotes temporal differentiation. Substituting for Ṡ from equation (61)
and simplifying, we find

Ġ(t) = d

[
D

R

(
∂C

∂r

)
R

− Ṙ

R
G(t)

]
. (63)

This equation shows the balance between particle diffusion and grain growth. If we designate
the characteristic frequency of particle diffusion by νD = D/R2 and that of grain growth by
νG = Ṙ/R, we notice that when νD � νG the grain growth is dominating and particles cannot
reach the boundary of the cell and G = C0(R0/R)d , with R0 denoting the initial cell size.
Using the relation for the grain growth, R = (Kt)α , we can write

G(t) ∼ t−αd for νG � νD. (64)

For example, in a three-dimensional spherical grain with α = 1/2,G(t) ∼ t−3/2. Thus the
total number of particles in the grain remains constant with time, i.e., S = V (t)G(t) = const.

On the other hand when νD � νG, the diffusion flux is the controlling parameter for
the escape rate. It may be illustrating to evaluate Ġ(t) in this regime for d = 3 when R is
stationary, with the well-known exact solution (Carslaw and Jaeger 1959)

Ġ(t) = 3
D

R

(
∂C

∂r

)
R

for νG � 1

(65)

G(T ) = 6C0

∞∑
k=1

exp(−k2π2T )

k2π2
.

Here T = Dt/R2 and also equation (65) gives G(0) = C0, as it should. In the long-time limit
only the slowest decaying eigenmode contributes; hence the asymptotic number of particles
per unit volume decays according to

G(T ) ∼ C0 e−π2T for νG � 1 ∧ T � 1. (66)

The corresponding formula for particle survival in the grain is

S(t) ∼ (Kt)3α e−π2DK−2αt1−2α

for νG � 1 ∧ Dt/R2 � 1, (67)

where again we employed R = (Kt)α . Hence for α < 2, S(t) exponentially decays to zero at
long times.

Let us finally investigate the case of a slowly growing grain by means of the adiabatic
approximation (Krapivsky and Redner 1996). In this method, the asymptotic solution is
constructed to have the same functional form as in the stationary grain, but in addition to
satisfy the time-dependent boundary condition, namely, C(R(t), t) = 0 and C(r, 0) = C0.
We write (d = 3)

C(r, t) ≈ R(t)

r
cos

(
πr

2R(t)

)
f (t) ≡ Cad(r, t), (68)

9
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where the function f (t) is determined by substituting equation (68) into the diffusion
equation (1), which yields

ḟ (t) = −π2D + 4RṘ

4R2

[
1 +

2πrṘ

π2D + 4RṘ
tan

(πr

2R

)]
f (t). (69)

Now by placing R = (Kt)α , with α < 1/2, into equation (69) the second term in the square
brackets is negligible and we write

df

dt
≈ −

(
π2D

4R2
+

Ṙ

R

)
f. (70)

If we further consider that νD � νG, then f (t) is given by

f (t) ≈ exp

[
− π2D

4(1 − 2α)K2α
t1−2α

]
, (71)

which is the same result obtained by Krapivsky and Redner (1996) for the one-dimensional
case. The corresponding relation for S(t) is

S(t) ≈ K3αt3α exp

[
− π2D

4(1 − 2α)K2α
t1−2α

]
, (72)

which is consistent with equation (67).

6. Summary

In this paper we have treated the problem of particles undergoing Brownian motion in an
expanding sphere whose surface absorb the particles (Dirichlet condition). The time-dependent
diffusion equation for particles in a d-dimensional sphere, which explicitly accounts for its
expansion, is formulated. The equation is solved by separating the space and time variables and
the spatial equation for the particle density is reduced to an ordinary confluent hypergeometric
differential equation, which implicitly contains the grain growth process. For a parabolic grain
growth law analytical solutions in terms of special functions are derived. When grain growth
is dominant over particle diffusion, the number of particles per unit volume contained in the
grain is calculated to evolve with time as G(t) ∼ t−αd , where α is the growth exponent and
d the spatial dimensionality. For the case of slow growth, i.e. when the ratio of grain growth
rate to diffusivity is small, an asymptotic solution is attained. In this regime the long-time
limit gives G(t) ∼ exp[−π2(D/K2α)t1−2α], where D is the particle diffusivity and K the
growth constant. The paper has focused on the mathematical and physical aspects of the
problem; numerical evaluations for a similar kind of problem are treated elsewhere (Forsberg
and Massih 2007).
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